Pkc1 and the upstream elements of the cell integrity pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, are required for cellular responses to oxidative stress.

نویسندگان

  • Felipe Vilella
  • Enrique Herrero
  • Jordi Torres
  • Maria Angeles de la Torre-Ruiz
چکیده

In this study we analyze the participation of the PKC1-MAPK cell integrity pathway in cellular responses to oxidative stress in Saccharomyces cerevisiae. Evidence is presented demonstrating that only Pkc1 and the upstream elements of the cell integrity pathway are essential for cell survival upon treatment with two oxidizing agents, diamide and hydrogen peroxide. Mtl1 is characterized for the first time as a cell-wall sensor of oxidative stress. We also show that the actin cytoskeleton is a cellular target for oxidative stress. Both diamide and hydrogen peroxide provoke a marked depolarization of the actin cytoskeleton, being Mtl1, Rom2 and Pkc1 functions all required to restore the correct actin organization. Diamide induces the formation of disulfide bonds in newly secreted cell-wall proteins. This mainly provokes structural changes in the cell outer layer, which activate the PKC1-MAPK pathway and hence the protein kinase Slt2. Our results led us to the conclusion that Pkc1 activity is required to overcome the effects of oxidative stress by: (i) enhancing the machinery required to repair the altered cell wall and (ii) restoring actin cytoskeleton polarity by promoting actin cable formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A synthetic analysis of the Saccharomyces cerevisiae stress sensor Mid2p, and identification of a Mid2p-interacting protein, Zeo1p, that modulates the PKC1-MPK1 cell integrity pathway.

Mid2p is a plasma membrane protein that functions in Saccharomyces cerevisiae as a sensor of cell wall stress, activating the PKC1-MPK1 cell integrity pathway via the small GTPase Rho1p during exposure to mating pheromone, calcofluor white, and heat. To examine Mid2p signalling, a global synthetic interaction analysis of a mid2 mutant was performed; this identified 11 interacting genes. These i...

متن کامل

A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae.

The PKC1-MPK1 pathway in yeast functions in the maintenance of cell wall integrity and in the stress response. We have identified a family of genes that are putative regulators of this pathway. WSC1, WSC2, and WSC3 encode predicted integral membrane proteins with a conserved cysteine motif and a WSC1-green fluorescence protein fusion protein localizes to the plasma membrane. Deletion of WSC res...

متن کامل

A MAP Kinase Dependent Feedback Mechanism Controls Rho1 GTPase and Actin Distribution in Yeast

In the yeast Saccharomyces cerevisiae the guanosine triphosphatase (GTPase) Rho1 controls actin polarization and cell wall expansion. When cells are exposed to various environmental stresses that perturb the cell wall, Rho1 activates Pkc1, a mammalian Protein Kinase C homologue, and Mpk1, a mitogen activated protein kinase (MAPK), resulting in actin depolarization and cell wall remodeling. In t...

متن کامل

Dissection of upstream regulatory components of the Rho1p effector, 1,3-beta-glucan synthase, in Saccharomyces cerevisiae.

In the budding yeast Saccharomyces cerevisiae, one of the main structural components of the cell wall is 1,3-beta-glucan produced by 1,3-beta-glucan synthase (GS). Yeast GS is composed of a putative catalytic subunit encoded by FKS1 and FKS2 and a regulatory subunit encoded by RHO1. A combination of amino acid alterations in the putative catalytic domain of Fks1p was found to result in a loss o...

متن کامل

Type 1 protein phosphatase is required for maintenance of cell wall integrity, morphogenesis and cell cycle progression in Saccharomyces cerevisiae.

GLC7 encodes the catalytic subunit of type 1 protein serine/threonine phosphatase (PP1) in the yeast Saccharomyces cerevisiae. Here we have characterized the temperature-sensitive glc7-10 allele, which displays aberrant bud morphology and an abnormal actin cytoskeleton at the restrictive temperature. At 37 degrees C glc7-10 strains accumulated a high proportion of budded cells with an unmigrate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 10  شماره 

صفحات  -

تاریخ انتشار 2005